Превращение энергии при гармонических колебаниях. Гармонические колебания

Меняется во времени по синусоидальному закону:

где х — значение колеблющейся величины в момент времени t , А — амплитуда , ω — круговая частота, φ — начальная фаза колебаний, (φt + φ ) — полная фаза колебаний . При этом величины А , ω и φ — постоянные.

Для механических колебаний колеблющейся величиной х являются, в частности, смещение и скорость , для электрических колебаний — напряжение и сила тока .

Гармонические колебания занимают особое место среди всех видов колебаний, т. к. это единственный тип колебаний, форма которых не искажается при прохождении через любую однородную среду, т. е. волны, распространяющиеся от источника гармонических колебаний, также будут гармоническими. Любое негармоническое колебание может быть представлено в виде сумм (интеграла) различных гармонических колебаний (в виде спектра гармонических колебаний).

Превращения энергии при гармонических колебаниях.

В процессе колебаний происходит переход потенциальной энергии W p в кинетическую W k и наоборот. В положении максимального отклонения от положения равновесия потенциальная энергия максимальна, кинетическая равна нулю. По мере возвращения к положению равновесия скорость колеблющегося тела растет, а вместе с ней растет и кинетическая энергия, достигая максимума в положении равновесия. Потенциальная энергия при этом падает до нуля. Дальней-шее движение происходит с уменьшением скорости, которая падает до нуля, когда отклонение достигает своего второго максимума. Потенциальная энергия здесь увеличивается до своего перво-начального (максимального) значения (при отсутствии трения). Таким образом, колебания кинетической и потенциальной энергий происходят с удвоенной (по сравнению с колебаниями самого маятника) частотой и находятся в противофазе (т. е. между ними существует сдвиг фаз, равный π ). Полная энергия колебаний W остается неизменной. Для тела, колеблющегося под действием силы упругости , она равна:

где v m — максимальная скорость тела (в положении равновесия), х m = А — амплитуда.

Из-за наличия трения и сопротивления среды свободные колебания затухают: их энергия и амплитуда с течением времени уменьшаются. Поэтому на практике чаще используют не свободные, а вынужденные колебания.

Рассмотрим процесс превращения энергии при гармоническом колебательном движении на примере идеального (F тр =0) горизонтального пружинного маятника. Выводя тело из положения равновесия, например сжимая пружину на х=А, мы сообщаем ему некоторый запас потенциальной энергии \(~W_{n_{0}} = \frac{kA^2}{2}\) (горизонтальный уровень, на котором находится маятник, выбираем за нулевой уровень отсчета потенциальной энергии маятника в поле силы тяжести, тогда W п = 0). При движении тела к положению равновесия его потенциальная энергия \(W_n = \frac{kx^2}{2}\) убывает, а кинетическая \(W_k = \frac{m \upsilon^2}{2}\) возрастает, так как деформация пружины уменьшается, а скорость движения тела увеличивается. В момент прохождения телом положения равновесия его потенциальная энергия равна нулю, а кинетическая \(W_{k_{0}}=\frac{m \upsilon^2_max}{2}\) - максимальна. После прохождения положения равновесия скорость тела уменьшается, а пружина растягивается. Следовательно, кинетическая энергия тела убывает, а потенциальная - возрастает. В точке максимального отклонения тела его кинетическая энергия равна нулю, а потенциальная - максимальна. Таким образом, при колебаниях периодически происходит переход потенциальной энергии в кинетическую и обратно. Полная механическая энергия пружинного маятника равна сумме его кинетической и потенциальной энергий \(W = W_k + W_n.\)

Если смещение материальной точки, совершающей гармонические колебания, изменяется с течением времени по закону \(~x = A \cos \omega t,\) то проекция скорости на ось х \(~\upsilon_x = -\omega A \sin \omega t\) (см. § 13.2). Следовательно, кинетическая энергия в любой момент времени может быть задана функцией \(W_k = \frac{m \upsilon^2}{2} = \frac{m \omega^2 A^2 \sin^2 \omega t}{2} = \frac{m \omega^2 A^2}{4}(1- \cos 2 \omega t),\) а потенциальная энергия - функцией \(W_n = \frac{k x^2}{2} = \frac{ k A^2 \cos^2 \omega t}{2} = \frac{m \omega^2 A^2}{4}(1+ \cos 2 \omega t) ,\) так как \(\omega^2 = \frac{k}{m}\), то \(~k = m \omega^2.\)

Полная энергия \(W = \frac{m \omega^2 A^2 \sin^2 \omega t}{2} + \frac{m \omega^2 A^2 \cos^2 \omega t}{2} = \frac{m \omega^2 A^2}{2} = \frac{kA^2}{2}.\)

Из этих формул видно, что W к и W п изменяются тоже по гармоническому закону, с одинаковой амплитудой \(\frac{m \omega^2 A^2}{4}\) и в противофазе друг с другом и с частотой \(~2 \omega\) (рис. 13.13), а полная механическая энергия не изменяется со временем. Она равна либо потенциальной энергии тела в момент максимального отклонения, либо его кинетической энергии в момент прохождения положения равновесия:

\(W = \frac{kA^2}{2} = \frac{m \upsilon^2_m}{2} = \frac{m \omega^2 A^2}{2}.\)

В реальных условиях на маятник всегда действуют силы сопротивления, поэтому полная энергия уменьшается, и свободные колебания маятника с течением времени затухают, т.е. их амплитуда уменьшается до нуля (рис. 13.14).

Описание видеоурока

Составим уравнение колебания шарика, нанизанного на гладкий горизонтальный стержень под действием силы упругости пружины. По второму закону Ньютона произведение массы тела на вектор ускорения есть равнодействующая всех сил, приложенных к телу. Сила, действующая на шарик, - это сила упругости растянутой или сжатой пружины. Её проекция по закону Гука равна произведению жесткости пружины на смещение шарика, взятое с обратным знаком. Подставляем выражение для силы упругости во второй закон Ньютона, получаем: произведение массы шарика на его ускорение равно произведению жесткости пружины на смещение шарика, взятое с обратным знаком. Разделим обе части уравнения на массу тела. Получаем, что проекция ускорения равна взятому с обратным знаком произведению отношения жесткости пружины к массе тела на смещение тела относительно положения равновесия. Так как масса тела и жесткость пружины — постоянные величины, то их отношение - также постоянная величина. Мы получили уравнение, описывающее колебания тела под действием силы упругости: проекция ускорения тела прямо пропорциональна его координате, взятой с противоположным знаком.

Аналогичным образом можно получить уравнение движения математического маятника. Оно схоже по форме с уравнением, которое описывает колебания тела под действием силы упругости. Проекция ускорения математического маятника равна взятому с обратным знаком произведению отношения ускорения свободного падения к длине нити на смещение тела относительно положения равновесия. Так как ускорение свободного падения и длина нити — постоянные величины для данного маятника, то их отношение - также постоянная величина. Значит, проекция ускорения математического маятника прямо пропорциональна его координате, взятой с противоположным знаком. Для двух рассмотренных колебательных систем справедливы одинаковые по форме уравнения движения: ускорение тела, совершающего колебания, прямо пропорционально смещению от положения равновесия, взятому с противоположным знаком.
Из курса математики известно, что ускорение точки — это производная ее скорости по времени или вторая производная координаты по времени. Поэтому уравнения движения тела, совершающего колебательные движения под действием силы упругости, можно записать таким образом: вторая производная координаты тела по времени равна взятому с обратным знаком произведению отношения жесткости пружины к массе тела на координату тела. Вторые производные синуса и косинуса по их аргументу пропорциональны самим функциям, взятым с противоположным знаком, и никакие другие функции таким свойством не обладают. Это значит, что координата тела, совершающего свободные колебания, меняется с течением времени по закону синуса или косинуса.
Запишем это уравнение, используя функцию косинуса. Тогда оно примет следующий вид: координата колеблющегося под действием силы упругости тела равна произведению максимального отклонения тела от положения равновесия на косинус произведения корня квадратного из отношения жесткости пружины к массе груза на время колебаний. Мы получили уравнение зависимости координаты тела, совершающего колебания, от времени. На рисунке изображено изменение координаты точки со временем по закону косинуса. Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями. Существует ряд величин, характеризующих колебательное движение. Отклонение тела от положения равновесия называют смещением. Амплитудой гармонических колебаний называется максимальное расстояние, на которое тело отклоняется от положения равновесия. Амплитуда зависит от начальных условий колебаний. Время одного полного колебания называется периодом колебаний. Период колебаний измеряется в секундах. Частотой колебаний называется число колебаний за единицу времени. Единица частоты колебаний в интернациональной системе единиц - герц. 1Герц (Гц)- частота такого колебательного движения, при котором
колеблющееся тело совершает одно полное колебание за одну секунду.
Циклическая или круговая частота - величина, которая показывает, сколько колебаний тело совершает за 2π секунд. Единица циклической частоты - радиан в секунду. Выведенная из состояния равновесия колебательная система совершает свободные колебания с определенной частотой, поэтому её называют собственной частотой колебательной системы. Для пружинного маятника собственная частота колебаний определяется как корень квадратный из отношения жесткости пружины к массе груза. Собственная частота математического маятника равна корню квадратному из отношения ускорения свободного падения к длине маятника. Если подставить выражение для собственной частоты в формулу уравнения зависимости координаты тела, совершающего колебания, от времени, то это уравнение примет следующий вид: координата колеблющегося тела равна произведению максимального отклонения тела от положения равновесия на косинус произведения циклической частоты системы на время колебаний.
Период свободных колебаний зависит от параметров самой системы. При колебаниях груза на пружине период зависит от жесткости пружины и массы груза. Чем больше жесткость пружины, тем меньше период колебаний; чем массивней груз, тем больше период колебаний. Для математического маятника период колебаний зависит только от длины нити: чем длиннее нить, тем больше период колебаний. От массы маятника он не зависит.
В уравнении, описывающем свободные колебания, под знаком косинуса находится произведение циклической частоты колебаний на время. Это произведение называют фазой колебаний. Выражается фаза в угловых единицах радианах. Фаза определяет значение координаты и других физических величин, например, скорости и ускорения, изменяющихся также по гармоническому закону. Поэтому можно сказать, что фаза определяет при заданной амплитуде состояние колебательной системы в любой момент времени. При совершении колебательных движений энергия системы переходит из одной формы в другую. Рассмотрим колебания шарика на пружине и предположим для простоты, что в колебательной системе отсутствуют силы трения. Смещая шарик, прикрепленный к пружине, вправо на расстояние х максимальное, мы сообщаем колебательной системе потенциальную энергию, равную половине произведения жесткости пружины на квадрат расстояния от положения равновесия. Под действием силы упругости шарик начнет двигаться влево, при этом деформация пружины станет меньше, и потенциальная энергия системы уменьшится. Но одновременно увеличится скорость и, следовательно, возрастет кинетическая энергия. Когда шарик будет проходить точку равновесия, деформация пружины будет равна нулю, следовательно, потенциальная энергия колебательной системы станет равной нулю. Скорость шарика в этой точке максимальна, значит, кинетическая энергия достигает максимума. При дальнейшем движении скорость шарика будет уменьшаться, а деформация пружины будет увеличиваться. Кинетическая энергия будет превращаться в потенциальную. В крайней левой точке она достигает максимума, а кинетическая энергия становится равной нулю. Мы видим, что при колебаниях шарика на пружине периодически происходит переход потенциальной энергии в кинетическую и обратно. Полная механическая энергия при колебаниях тела, прикрепленного к пружине, равна сумме кинетической и потенциальной энергий колебательной системы. Согласно закону сохранения механической энергии при отсутствии трения полная механическая энергия изолированной системы неизменна.
В реальных колебательных системах всегда действуют силы трения. Они совершают отрицательную работу и тем самым уменьшают механическую энергию системы. Часть механической энергии системы расходуется на преодоление сил трения и переходит во внутреннюю энергию тел системы и окружающей среды. Поэтому с течением времени максимальные отклонения тела от положения равновесия становятся все меньше и меньше. После того, как запас механической энергии окажется исчерпанным, колебания прекратятся совсем. Любые свободные колебания являются затухающими.

Рассмотрим на примере колебаний груза на пружине, какие превращения энергии происходят в колебательной системе. Сначала рассмотрим случай, когда в системе нет трения. Первоначальное положение системы показано на следующем рисунке (а).

Выведем систему из положения равновесия, оттянем шарик вправо на расстояние Хm. На рисунке выше положение (б). При этом мы сообщим системе некоторую потенциальную энергию.

Формула потенциальной энергии

Потенциальная энергия будет вычисляться по следующей формуле:

Wп = (k*(Xm)^2)/2.

Вся энергия системы будет равняться потенциальной энергии.

После этого мы отпустим тело. Шарик начнет движение влево. Деформация пружины будет уменьшаться. При этом будет становиться меньше и потенциальная энергия. Но из закона сохранения энергии мы знаем, что она не может исчезать бесследно, она должна переходить в какой-то другой вид энергии.

Заметно, что после того как мы отпустили шарик, его скорость начала увеличиваться, а следовательно, будет возрастать и кинетическая энергия. В момент, когда шарик будет проходить положение равновесия, его скорость будет максимальной, а, следовательно, кинетическая энергия тоже будет максимальной. При этом, так как деформация пружины равняется нулю, то потенциальной энергии вообще не будет.

После того как шарик пройдет положение равновесия, его скорость снова начнет уменьшаться. А значит, будет уменьшаться и кинетическая энергия его движения. Так как в системе снова появится деформация пружины, она будет растягиваться, то начнет увеличиваться потенциальная энергия.

Дойдя до крайнего левого положения (в), потенциальная энергия достигнет своего максимального значения. А скорость груза в этой точке станет равной нулю. То есть кинетическая энергия будет равняться нулю.

Превращение энергии при гармонических колебаниях

Мы видим, что полная энергия системы в любой момент времени есть сумма потенциальной энергии системы и кинетической энергии системы.

W = Wк+Wп = (m*V^2)/2 +(k*x^2)/2.

Такие же превращения энергии будут происходить и в математическом маятнике. Как мы видим, полная механическая энергия замкнутой системы будет сохраняться постоянной. Хотя при этом значения кинетической и потенциальной энергии могут меняться, но в сумме они всегда будут давать одинаковое число.

Полная механическая энергия системы равняется потенциальной энергии тела в начальной момент, либо кинетической энергии тела, при прохождении им положения равновесия.

W = (m*V^2)/2 = (k*x^2)/2.

Если в системе будет присутствовать трение, то часть энергии будет теряться на преодоление сил трения. При этом с течение времени амплитуда колебаний будет уменьшаться, пока тело совсем не остановится. Данные колебания будут затухающими.

При колебаниях математического маятника полная энергия системы складывается из кинетической энергии материальной точки (шарика) и потенциальной энергии материальной точки в поле сил тяготения. При колебаниях пружинного маятника полная энергия складывается из кинетической энергии шарика и потенциальной энергии упругой деформации пружины:

При прохождении положения равновесия и в первом и во втором маятнике кинетическая энергия шарика достигает максимального значения, потенциальная энергия системы равна нулю. При колебаниях происходит периодическое превращение кинетической энергии в потенциальную энергию системы, полная энергия системы при этом остается неизменной, если отсутствуют силы сопротивления (закон сохранения механической энергии). Например, для пружинного маятника можно записать:

В колебательном контуре (рис.14.1.с) полная энергия системы складывается из энергии заряженного конденсатора (энергии электрического поля )и энергии катушки с током (энергии магнитного поля . Когда заряд конденсатора максимален, ток в катушке равен нулю (см. формулы 14.11 и 14.12), энергия электрического поля конденсатора максимальна, энергия магнитного поля катушки равна нулю. В момент времени, когда заряд конденсатора равен нулю, ток в катушке максимален, энергия электрического поля конденсатора равна нулю, энергия магнитного поля катушки максимальна. Также как и в механических осцилляторах, в колебательном контуре происходит периодическое превращение энергии электрического поля в энергию магнитного поля, полная энергия системы при этом остается неизменной, если отсутствует активное сопротивление R . Можно записать:

. (14.15)

Если в процессе колебаний на математический или на пружинный маятник действуют внешние силы сопротивления, а в цепи колебательного контура есть активное сопротивление R , энергия колебаний, а значит, и амплитуда колебаний будут уменьшаться. Такие колебания называются затухающими колебаниями , на рисунке 14.2 приведен график зависимости колеблющейся величины Х от времени.

Рис. 14.3

§ 16. Переменный электрический ток.

С источниками постоянного тока мы уже знакомы, знаем, для чего они нужны, знаем законы постоянного тока. Но гораздо большее практическое значение в нашей жизни имеет переменный электрический ток, который используется в быту, на производстве и других областях человеческой деятельности. Сила тока и напряжение переменного тока (например, в осветительной сети нашей квартиры) меняются со временем по гармоническому закону. Частота промышленного переменного тока – 50Гц. Источники переменного тока разнообразны по своему устройству и характеристикам. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока. На рис.14.3 рамка вращается вокруг вертикальной оси ОО , перпендикулярной силовым линиям магнитного поля, с постоянной угловой скоростью . Угол α между вектором и нормалью меняется по закону , магнитный поток через поверхность S , ограниченную рамкой, меняется со временем, в рамке возникает ЭДС индукции.